
Putting the elephant in the
room

Pete MacKinnon & Rob Rati
Presented by

Big Data/MRG
Red Hat Inc.

This work is licensed under a Creative Commons Attribution 3.0 Unported License.

Bringing Hadoop to
Fedora

Today's Topics

1. Hadoop background

2. Fedora Java packaging

3. Hadoop packaging

4. Future

5. Questions

Hadoop
Background

Data storage and analytics at web scale

Web page indexing

Social media content

Consumer data

Exabytes of data

1 exabyte == 1000 petabytes == 1017 kb

IDC estimates ~40-50 exabytes of digital
universe content by 2020

Traditional RDBMS infrastructure can't cut it

New technology and techniques required...

Big Data

Flip conventional data computing

OLD

Centralized RDBMS servers stuffed with as much
RAM and disk as they can handle

NEW

De-centralized and distributed

Data storage is replicated in blocks across
commodity hardware

The algorithmic tasks (i.e., MapReduce) are sent out
to the data where it lives

Tasks are tracked and results collected and distilled

The Premise

2003

Google research papers describing distributed
file system and map/reduce algorithm

2004

Doug Cutting starts developing Nutch in Java

2006

Cutting joins Yahoo! where research cluster is
formed

1.9 terabyte sort on 188 nodes in 47 hours

2008

Hadoop becomes top-level Apache project

Brief history

Single NameNode

Multiple DataNodes attached to a NameNode

Data is stored in blocks (typically 128Mb) that
are replicated across DataNodes (servers,
racks)

NameNode stores file metadata for clients

DataNode stores a checksum for every 512
bytes

If checksum validation fails then framework
moves onto other replicas

Hadoop HDFS basics

Essentially a query application of the Hadoop
framework

A client of HDFS

Parallelization, fault tolerance, data distribution,
load balancing

all responsibilities of Hadoop framework

programmer provides the map algorithm and
the reduce algorithm

Streaming and pipelining of data

MR implementation can be C++ also

Counters, sorts, joins, etc.

Hadoop MR basics

MR algorithm

public static class Map

 extends Mapper<LongWritable, Text, Text, IntWritable> {

 private final static IntWritable one = new IntWritable(1);

 private Text word = new Text();

 public void map(LongWritable key, Text value, Context context)

 throws IOException, InterruptedException {

 String line = value.toString();

 StringTokenizer tokenizer = new StringTokenizer(line);

 while (tokenizer.hasMoreTokens()) {

 word.set(tokenizer.nextToken());

 context.write(word, one);

 }

 }

Hadoop map

 public static class Reduce

 extends Reducer<Text, IntWritable, Text, IntWritable> {

 public void reduce(Text key, Iterable<IntWritable> values, Context
context)

 throws IOException, InterruptedException {

 int sum = 0;

 for (IntWritable val : values) {

 sum += val.get();

 }

 context.write(key, new IntWritable(sum));

 }

 }

Hadoop reduce

 public static void main(String[] args) throws Exception {

 Configuration conf = new Configuration();

 Job job = new Job(conf, "wordcount");

 job.setOutputKeyClass(Text.class);

 job.setOutputValueClass(IntWritable.class);

 job.setMapperClass(Map.class);

 job.setReducerClass(Reduce.class);

 job.setInputFormatClass(TextInputFormat.class);

 job.setOutputFormatClass(TextOutputFormat.class);

 FileInputFormat.addInputPath(job, new Path(args[0]));

 FileOutputFormat.setOutputPath(job, new Path(args[1]));

 job.waitForCompletion(true);

 }

Hadoop MR driver

Hadoop evolution

YARN

Hadoop Common: HDFS, MapReduce

Hive: data warehouse system providing SQL-like
language

HBase: distributed, column-oriented store based
on Google Bigtable

Mahout: machine learning library built atop MR

Ambari: provision, monitor, and manage Hadoop
clusters

And much, much more...

Ecosystem

Fedora Java
Packaging

Hadoop is a Maven-based project

Build-time dependency management and
compilation tool

“Makefiles” are written in XML; pseudo-
hierarchical

Extensible for plugins

Pulls dependencies (typically Java jar files)
from well-known centralized repositories to
populate a local repo

Very popular in Apache and Java community
at large

Maven

Fedora

“Thou shalt have only one platform version,
ideally the most recent”

Software dependencies are expected to be
compatible

Maven

“Use whatever version you want, wherever you
want in your project”

Jars live on in perpetuity in the Maven central
repositories

Guides dependency compatibility but doesn't
guarantee it

Packaging throwdown

Java team has developed Maven bridge tools

Pre-Fedora 19 (patched mvn)

mvn-rpmbuild: resolve jars for Fedora system
repo, not Maven central repositories

mvn-local: try Fedora first, then fall back

Fedora 19 and beyond (xmvn)

extensions with Fedora-aware spec macros

simplifies spec for Java Maven projects

mvn-build: syntactic sugar with commonly used
“install” phase options

classpath building tools for symlinks, etc.

Tooling

Mapping

Maven POM

<groupId>

<artifactId>

<version>

Fedora

/usr/share/java/group

/usr/share/java/group/artifact

ignored (latest for that
Fedora release)

Hadoop
Packaging

Started with 2.0.2-alpha, now 2.0.5-alpha

Two objectives

Integrated patch set that could be applied from a
spec

Series of defined patch groups that could be
“atomically” offered up to upstream

Tracking branches set up publicly at
http://github.com/fedora-bigdata

Maintain a topic branch from the integration for
testing and parity with the upstream baseline

Some modifications are “non-upstreamable”

Strategy

73 extrinsic dependencies in upstream Hadoop

Not everything needs adjustment

Fedora Maven tooling resolves deps from local install
for you, regardless of version

No API or serious breakage? You're in business!

Tier 4: dep packages that are available and compatible

Tier 3: explicit POM decl; groupId/artifactId adjustment

Tier 2: source code changes for different API or behavior

Tier 1: entire dependency is missing and needs
packaging

Adaptation

Tier 4 examples

commons-io, commons logging, asm, etc.

Tier 3 example

<groupId>tomcat</groupId>

<groupId>org.apache.tomcat</groupId>

Tier 1

bookkeeper

zookeeper

jspc-maven-plugin

maven-native

Tiers

Jetty 6.1.z to 9.0.z

Jetty 6 servlet engine could host Tomcat 5.5 Jasper
(JSP) compilations

Not true for Tomcat 7 inside Jetty 9

NoClassDefFoundError:
org/apache/tomcat/InstanceManager

Needed to swap out Jasper in favor of Glassfish
JSP compiler implementation

 SSL API changes for Jetty

JUnit tests

some tests tied to API and error message content

assert logic overhaul

Tier 2 in more detail

Workflow

Maven build is sequential

compile, install, test phases

1) Identify and
develop source/test
mod

2) Create or update
patch branch

3) Merge into
integration branch

4) Merge integration
to test branch

5) Run test suites in
mvn and Fedora
xmvn

Dependencies available in Fedora (missing since project
initiation): 100%

Adaptation of Hadoop 2.0.5a source via patches: 100%

Hadoop spec completion: 100% (httpfs disabled)

2 of 10 offered patch sets accepted by Apache

Will rebase to Hadoop 2.1 (2.2?) official release when
available later this year

May stick with 2.0.5a due to F20 cut-off or just
increment tarball

Tests

5545 pass, 7 fail, 16 errors, 27 skipped

Status

Future

Fedora Software Collections

Concurrently install multiple versions of the
same RPM packages on your system

Allow you to build a conventional package
and a Software Collection package from a
single spec file

SC namespace ensures no collisions with
incumbent/existing packages

However...
Java spec files would get very messy

Unapproved for official packages

Software Collections

Perhaps a Fedora Java
dependency czar is the
solution

Someone who decides
the appropriate API
levels for a given
release

Identify and protect the
“strategic” Java projects

Abolish the package
democracy in the Java
space

Java Oversight

Matthew Miller talk tomorrow

“An Architecture for a More Agile Fedora”

Traditional Fedora space in a lower/inner ring

Kernel, Yum, RPM, Python 2, etc.

Canonical repository

Higher rings

More freedom for SIGs to maneuver

Custom package systems? Maven?

SIG repositories

How do the rings associate?

Is Maven fundamental to base or only SIG?

Ring Theory

On track to have Hadoop 2 in Fedora 20

The maintenance road ahead is a long
one

also applies to ecosystem constituents as
they come into the fold

hadoop-common gives a base

Fedora needs to evolve to satisfy

admins (stability) AND

developers (agility)

Summary

Questions?

This work is licensed under a Creative Commons Attribution 3.0 Unported License.

bigdata@lists.fedoraproject.org
Contact:

